756 research outputs found

    Density perturbations in hybrid inflation

    Get PDF
    Thesis: S.M., Massachusetts Institute of Technology, Department of Physics, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (page 35).Inflation is a substantial modification to the big bang theory, and supernatural inflation is a hybrid inflation motivated from supersymmetry. In this thesis we carry out a one dimensional numerical simulation to verify the untested analytic approximation of Radall et al. The results show a good agreement for a wide range of parameters. We also propose a new method for calculating density perturbations in hybrid inflation, which shows an excellent agreement with the simulation in one dimension.by Nguyen Thanh Son.S.M

    Design and Development of Climbing Robotic Systems for Automated Inspection of Steel Structures and Bridges

    Get PDF
    Steel structures are indispensable parts of modern civilization, with typical civil infrastructures including bridges, wind turbines, electric towers, oil rigs, ships, and submarines, all made of steel. These structures require frequent maintenance to ensure safety and longevity. Steel bridges are the most challenging architectures due totheir complexity and height. Most inspections are conducted manually by professional human inspectors with special devices to inspect visible damages and defects on or inside these structures. However, this procedure is usually highly time-consuming, costly, and risky. Automated solutions are desired to address this problem. However, arduous engineering is delaying progress. A complete system needs to deal with three main problems: (1) locomotive performance for the high complexity of steel bridges, including differential curvatures, transitions between beams, and obstacles; (2) data collection capability, inclusive of visible and invisible damages, in-depth information such as vibration, coat, and material thickness, etc.; and (3) working conditions made up of gust winds. To achieve such a complete system, this dissertation presents novel developments of inspection-climbing robots. Five different robot versions are designed to find the simplest and most effective configuration as well as control manner. Our approach started with (1) a transformable tank-like robot integrated with a haptic device and ii two natural-inspired locomotion, (2) a roller chain-like robot, (3) a hybrid worming mobile robot, (4) a multi-directional bicycle robot, and (5) an omni-directional climbing Robot, identified as the most potential solution for automated steel bridge inspection. For each robotic development, detailed mechanical analysis frameworks are presented. Both lab tests and field deployments of these robotic systems have been conducted to validate the proposed designs

    Interpolation Based Parametric Model Order Reduction

    Get PDF
    In this thesis, we consider model order reduction of parameter-dependent large-scale dynamical systems. The objective is to develop a methodology to reduce the order of the model and simultaneously preserve the dependence of the model on parameters. We use the balanced truncation method together with spline interpolation to solve the problem. The core of this method is to interpolate the reduced transfer function, based on the pre-computed transfer function at a sample in the parameter domain. Linear splines and cubic splines are employed here. The use of the latter, as expected, reduces the error of the method. The combination is proven to inherit the advantages of balanced truncation such as stability preservation and, based on a novel bound for the infinity norm of the matrix inverse, the derivation of error bounds. Model order reduction can be formulated in the projection framework. In the case of a parameter-dependent system, the projection subspace also depends on parameters. One cannot compute this parameter-dependent projection subspace, but has to approximate it by interpolation based on a set of pre-computed subspaces. It turns out that this is the problem of interpolation on Grassmann manifolds. The interpolation process is actually performed on tangent spaces to the underlying manifold. To do that, one has to invoke the exponential and logarithmic mappings which involve some singular value decompositions. The whole procedure is then divided into the offline and online stage. The computation time in the online stage is a crucial point. By investigating the formulation of exponential and logarithmic mappings and analyzing the structure of sums of singular value decompositions, we succeed to reduce the computational complexity of the online stage and therefore enable the use of this algorithm in real time

    耐環境用途に向けた複合酸化物およびその複合材料の材料設計と創製に関する研究

    Get PDF
    国立大学法人長岡技術科学大
    corecore